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The use of plug-flow reactors is common for kinetic studies in heterogeneous catalysis. Recently, 
transient tracing has been found to be advantageous in providing additional mechanistic informa- 
tion above that obtained by customary steady-state kinetics. Despite the advantages of transient 
tracing, it often suffers from incorrect data analysis in the case of plug flow because of failure to 
take into account the formalism needed to model plug-flow transient tracing as contrasted with that 
required to describe transient tracing in a gradientless recirculating reactor (CSTR). This paper 
presents a development of the appropriate differential equation system applying to plug-flow stud- 
ies involving transient isotopic tracing superimposed on an overall steady-state kinetics. Closed 
mathematical expressions are presented for simple practical cases and used to illustrate important 
special characteristics of these systems. © 1990 Academic Press, Inc. 

INTRODUCTION 

Both gradientless and plug-flow reactors 
(I, 2) have been employed without tracers 
in studies of heterogeneous catalysis. If 
data are obtained under steady-state opera- 
tion, a plug-flow reactor is often operated 
with differential conversion. In this way, an 
average reaction rate can be assumed and it 
is possible to avoid integration of an as- 
sumed rate expression. Under these condi- 
tions, each sample set corresponds to a sin- 
gle reaction rate at fixed temperature, 
pressure, and concentration of observable 
reactants and products. 

Additional information regarding basic 
parameters (surface concentration of ad- 
sorbed intermediates and step velocities) is 
obtainable by transient isotopic tracing. 
The procedure employed (i) is the intro- 
duction of a step function of traced reactant 
or product, while at the same time main- 
taining the total concentration of species 
unchanged. In this way it is still possible to 
retain the same kinetics of the steady-state 
regime provided that isotopic kinetic ef- 
fects can be neglected. A number of sys- 
tems have been studied using this proce- 
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dure (1) for reactions conducted in 
gradientless recirculating (CSTR) reactors 
using compartmental modeling (3, 4). More 
recently this experimental technique has 
been applied (5-8) to data obtained in plug- 
flow reactors, but results have been incor- 
rectly interpreted by using compartmental 
modeling to correlate the data. 

There are, of course, additional factors 
that need to be considered in the design of 
plug-flow experimental systems to secure 
satisfactory data. These problems are com- 
mon in the design of reactors whether or 
not tracer is employed. What is important 
here in the context of plug-flow operation is 
that when a once-through system is em- 
ployed very accurate chemical analysis will 
be required as contrasted with recycle op- 
erations in gradientless systems where the 
recirculating stream, which is also the out- 
let, is sampled. The accuracy and speed of 
response of analytical equipment such as a 
mass spectrometer must be considered. 
Methods of introduction of traced species 
and removal of samples must avoid causing 
abrupt changes in system pressure. Dilu- 
tion of reacting species by an inert carrier 
gas may be desirable to extend response 
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time. The configuration of  the catalyst par- 
ticles and the dimensions of  the bed must be 
such as to minimize intraparticle diffusion 
and axial mixing effects. 

In what follows, we will first present  the 
basic mathematical  equations that are re- 
quired to model plug-flow transient tracing. 
Next ,  the relationship between the more 
conventional  compartmental  modeling and 
plug-flow tracing will be considered. Fi- 
nally the results will be illustrated by pro- 
viding exact  solutions for simple cases in- 
volving unidirectional overall reactions by 
applying the Laplace transform technique. 

BASIC PLUG-FLOW EQUATIONS 

Let  us consider the simplest possible sys- 
tem for a heterogeneous catalytic reaction: 

u+l  > U+2 

A , A1 < ~ B. (I) 
o I ° - 2  

This schematic representat ion consists of  a 
reactant A, producing an intermediate A1 (1 
is a catalyst site), and finally a product  B. 
We wish to model transient tracing for this 
system in a plug-flow reactor  with differen- 
tial conversion of  the reactant A to the 
product  B. It is assumed that the reaction 
system itself is first brought to steady state. 
At time t = 0, the input of  the reactor  is 
switched to one containing a fixed propor- 
tion of  marked A or B while at the same 
time maintaining constant the total concen- 
trations of  marked plus unmarked species. 
The fraction of  t racer  in components  A and 
B is observed until steady-state marking is 
finally attained. 

Figure 1 (not to scale) illustrates the plug- 
flow reactor  in which we focus attention on 
a Aw increment,  where w represents axial 
position in the bed containing a mass of  cat- 
alyst W. We will construct  mass balances at 
a given instant of  time t for  all three of the 
designated species A, A1, and B. Note  that 
A1 is at a fixed position in the bed, contrary 
to A and B, which are passing through it. 
Since the mass balances involve two 
phases, it is necessary  to employ a conver- 
sion factor  so as to have a common basis. 

CATALYSTBED 

FIG. 1. 

INLET 

OUTLET 

w = 0  

.-,I--- w, FA, z A 

w = W  

Plug-flow reactor (A species). 

Chemical reaction rates are often written in 
terms of conversion per unit time and unit 
mass of  catalyst. We will adopt this con- 
vention and write conversion in terms of  
gaseous volumes at standard conditions of 
temperature and pressure. Thus a simple 
example for units of  velocity would be ml 
STP/(s • g). L e t / 3  be the equivalent dead 
space; it consists of  the volume STP associ- 
ated with all intra- and interparticulate 
voids for the entire mass of  the catalyst. We 
assume that the reactor  is operated isother- 
mally and isobarically. For  purposes of  a 
mass balance, it is necessary to express/3 in 
terms of  gas volume under standard condi- 
tions rather than as actual physical volume. 
Thus B / W  serves to convert  concentrat ion 
of a component  A or B from a fraction of 
the gas phase to the amount  of  the compo- 
nent per unit mass of  catalyst. With these 
conventions we may derive the following 
mass balances in the gas phase per unit 
mass of  catalyst. 

Le t  us construct  the mass balance for 
marked A in a section 2~w, assuming that 
v+l and V-m are constant since the reaction 
is differential throughout the entire catalyst 
bed. Feed enters the section Aw at a rate F a 
and leaves it at a rate (F  A + A F  A) (Fig. 1). 
At the same time, the fractional marking of  
A entering the section zXw is z a and that 
leaving it is (z A + AzA). Thus the net input 
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of marked A from the gas flow through the 
Aw section is 

input output 
F A z A  -- ( F  A + A F A ) ( z  A -t- A z A  ) 

net input 
~- - F  A A Z  A - z A A F  A -- A F A A z  A. (2) 

At the same time, z 61 the fractional marking 
of A1 on the catalyst can be taken at an 
average constant value. The net input of 
marked A from the catalyst within the Aw 
section is thus 

input output 
O - l Z  AI 6 W  -- U+IZ A A W  

net input 
= (U-1 zA1 -- U+IZ A) 6142. (3) 

The contribution from the sum of the pro- 
cesses shown in Eqs. (2) and (3) results in 
an accumulation per unit time in the Aw 
section, which may independently be ex- 
pressed as follows 

• C  A OZ A 
- -  6w = accumulation. (4) 

W Ot 

Thus, equating the sum of Eqs. (2) and (3) 
with Eq. (4) and neglecting the seCond-or- 
der term A F A A z  A, w e  obtain 

~ C  A OZ A 
6 W  = - F  A 6 Z  A - Z A 6 F  a 

W Ot 
q- (U_lZ AI -- U+IZ A) AW. (5) 

Dividing by 6w and letting 6 z  A and 6w ap- 
proach zero, we obtain 

t i C  A Oz A = - F  A Oz__~ A _ z A OFA 

W Ot Ow Ow 

"4- U-IZ AI -- V+lZ A. (6) 

Since F A d z  A + Z A d F  A = d ( F A z A ) ,  Eq. (6) 
can be written as 

OFAz----~a + f lCA c)zA -- U_IZ AI -- U+lZ A. (7) 
Ow W 3t 

In Eq. (7), F A is a function of w and z A is a 
function of both w and t. 

In a similar fashion the mass balances 
corresponding to species A1 and B can be 
constructed. They are as follows: 

CA 10zA1 

Ot 
U+lZ A -- U_IzA1 -- U+2zA l 

q- U-2Z B (8) 

OFBz 8 t i C  8 0 z  ~ 
O ~  + W Ot - v+2zA~ - v-2zB" (9) 

It is readily seen that for more complicated 
mechanisms the same procedure using ma- 
terial balances can applied. As many partial 
differential equations are obtained as there 
are species. 

In order to estimate the unknown param- 
eters of such models (i.e., step velocities 
and surface concentrations) from experi- 
mental data, these equations must be 
solved (either numerically or analytically) 
in terms of these parameters. For numerical 
solution, one uses trial values of the param- 
eters to generate predicted tracer concen- 
trations which may be compared with the 
actual data in order to select the set which, 
using some suitable criterion, optimizes the 
goodness of fit. 

Before proceeding to the solution of 
these types of equations, we wish to elabo- 
rate the distinction which must be made be- 
tween models for plug-flow and gradient- 
less recirculating (CSTR) reactors. For this 
purpose we present in the next section an 
alternative equivalent way of visualizing 
the characteristics of models for plug-flow 
transient tracing. 

COMPARISON WITH COMPARTMENTAL 
MODELS 

When a gradientless recirculating reactor 
is employed instead of a plug-flow reactor, 
the scheme for interpreting transient trac- 
ing is often described as a compartmental 
model. The resulting model equations are 
somewhat different from those developed 
in the previous section for plug-flow. A 
compartmental model consists of a finite 
number of well-mixed subsystems, called 
compartments, which exchange with each 
other and the environment (3). The quan- 
tity and concentration of tracer within each 
compartment may be described by a first- 
order ordinary differential equation. A 
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Fio. 2. Simple compartmental model. 

compartmental system may be used to 
model the kinetics of two or more species, 
in which case different compartments may 
occupy the same physical space. 

Compartmental models are widely used 
for the modeling of systems in biomedicine, 
pharmacokinetics, and ecology but applica- 
tions in chemical engineering are fewer. In 
the biosciences, data are often obtained by 
employing small concentrations of radioac- 
tive isotopes as tracers. It is possible to de- 
scribe such experiments by linear models in 
which flow rates are proportional to quanti- 
ties in a donor compartment. In the method 
that we employ (4), linearization is accom- 
plished by tracer substitution which allows 
us to use large concentrations of tracers. 

Let us consider the system represented 
by Eq. (1). In terms of a compartmental 
model for this reaction occurring in a gra- 
dientless reactor, the mechanism can be 
represented as shown in Fig. 2. The com- 
partments are represented by boxes and 
arrows indicate the exchange of material 
between compartments or between com- 
partments and the outside. 

Three mass balances are involved, corre- 
sponding to the three compartments. Note 
that compartments A and B occupy the 
same physical space. Physically, a single 
CSTR accomodates all three compart- 
ments. The three ordinary differential equa- 
tions in time associated with this model are 
readily available (4). 

If we wish to extend consideration of this 
model to data collected in a plug-flow reac- 
tor, the situation is more complicated be- 
cause an independent space variable w is 
involved as well as time. We might visual- 
ize the situation as corresponding to a se- 

ties of compartmental submodels as shown 
in Fig. 3. 

The boxes marked A and B occupy the 
entire gas space in Aw but they both occupy 
this space together, as in the simple com- 
partmental model. Gas passes downward 
through the bed but the species A1 ex- 
changes on the catalyst surface which is 
physically not part of the space occupied by 
A and B. Thus the increment designated by 
Aw in the previous section may be trans- 
formed into one of a series of compartmen- 
tal models, each of which consists of three 
compartments. An alternative way of simu- 
lating our model would then be to compute 
the solution of the corresponding set of or- 
dinary differential equations in time. If we 
chose to divide the reactor into 10 space 
increments, this could involve solving a set 
of 30 first-order ordinary differential equa- 
tions. Because of the lack of sufficiently de- 
tailed appropriate experimental data in the 
literature for modeling plug-flow experi- 
ments, we will not carry out numerical so- 
lution of the partial differential equations 
developed in the previous section or for the 
equivalent formalism developed in this sec- 
tion. Instead, in the following section, we 
will confine our attention to analytical solu- 

INLET 

z(t,w) 

OUTLET 

w=0 

Aw 

w=W 

FIG. 3. Extended compartmental model. 
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tions of several simple cases of practical 
interest. 

S I M P L E  U N I D I R E C T I O N A L  R E A C T I O N S  

S i n g l e  I n t e r m e d i a t e  

Consider again the model described by 
Eq. (1), but for the unidirectional case 
where v-i  = u - 2  = 0 ,  s o  that v+l = u + 2  = V :  

V V 
A ~ A1 --> B. (10) 

Since we are dealing with a differential 
plug-flow reactor,  we assume that C A and 
C 8 can be expressed as linear functions of 
the position in the bed w, so that, if for 
simplicity we have a pure feed of compo- 
nent A with FB(0) = 0, the following rela- 
tionships apply: 

Fa(w) = F - V w,  CA(w) = FA(w)  
F ' 

F~(w) 
FB(w) : V w,  Ca(w)  - F (11) 

For  the purpose of computing the step ve- 
locities in a differential reactor,  all concen- 
trations are taken as constant and equal to 
their average value. This is why in what 
follows we will consider C A1 as a constant. 
This should not be confused with the fact 
that a nonzero reaction rate implies a 
change in concentrat ion of reacting species 
between the input and output  of a differen- 
tial section. 

The boundary conditions are as follows. 
At time t = 0, z A, z AI and z e are zero for any 
value of w corresponding to the inside of 
the reactor.  At the entrance of the reac- 
tor bed (w = 0) a step function z a of mag- 
nitude z A is introduced starting at time 
t = O .  

The solution of the model for the plug- 
flow reactor  corresponding to Eq. (10) has 
already been reported (I), 

zA(I, W) = Z~ U ( t  - ~ w )  (12) 

zal( t ,  w)  = zB(t, W ) =  Z A 

Bw 
u ( t - - F - - ~ ) ,  (13) 

where u(t) is the Heaviside step function. 
If  it is only possible to observe marking 

of terminal species, the observed data will 
correspond to w -- W, the effluent state. 
The corresponding observations are illus- 
trated by Fig. 4. 

It is of  interest to compare the result 
given in Eqs. (12) and (13) with that ob- 
tained when the same system described by 
Eq. (10) is studied using a gradientless re- 
circulating reactor,  as already treated in de- 
tail (1). Several  important  qualitative differ- 
ences are immediately evident. As seen 
from Fig. 4, for the plug-flow reactor,  there 
is a delay in the appearance of marked A 
species at the exit. z A then immediately 
reaches its asymptotic  value. Such a delay 
does not occur  in the analogous case of the 
compartmental  model,  and the appearance 
of z A is gradual. Secondly,  at the end of the 
delay period, z ~ increases from zero with a 
positive slope with respect  to time in the 
case of the plug-flow reactor  whereas the 
initial slope for z ~ is zero in the case of the 
gradientless recirculating reactor.  Finally, 
from Eq. (13), we see that Z z l  and z B are 
identical in the case of the plug-flow reac- 
tor, contrary to what happens in the gra- 
dientless recirculating reactor.  Similar 
differences between plug-flow and gradient- 
less recirculating reactors exist in other 
cases treated in this paper, but  we will not 
further elaborate these comparisons here. 

T w o  I n t e r m e d i a t e s  

To illustrate the effect of additional steps 
let us consider the following: 

V V v 
A ~ A1 ~ B1 --+B. (14) 

Material balance equations over a differen- 
tial section of  the plug-flow reactor  become 
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z . . . . . . . .  

0 . 6 3  z A | . . . . . . . . .  

0 J 

~ zB(t,W) 

/ 
C A1 

~+-W- 

FIG. 4. Observed tracer transients for a model with two unidirectional steps. 

0 [ f f A ( w ) z A ( I  ' W ) ]  

Ow 

flCA(w) ~t za(t' w) 
+ W 

= -- VzA(I, W) (15) 

0 
C A~ ~ z~(t, w) 

0 
C ~r -~ z~l(t, w) 

[FB(w) z~(t, w)] + 
Ow 

= VzA(t, W) -- vzAI(t ,  W) 

(16) 

= V zAl(t, W) -- V Zm(t, w) 

(17) 

~CB(w) o 
zB(t, w) 

W ot 

= V zB~(t, w).  (18) 

With the same basic assumptions and 
boundary conditions as previously (with 
the addition of  those for z e~, taken the same 
as for zA1), provided that C al ~ C B1, we 
obtain 

{ sB ( t ,  W )  = Z A 1 -~- GB l -- C A  1 

[ 
e x P L - - ~  C A 1 -  C B1 

flw fiw 
exp [ -  ~-N - u - 

(19) 

z A and Z AI a r e  still given by Eqs. (12) and 
(13), and zm(t, w) = z~(t, w). Figure 5 illus- 
trates the observed tracer transients at 
w = W .  

When modeling a reaction following Eq. 
(1), C AI is uniquely identifiable from the 
knowledge of  zB(t, W). But in the case of 
of Eq. (14), C al and C ~l are only locally 
identifiable, since one cannot distinguish 
between the two time constants Cai/V and 
CB~/V. The same situation also exists with 
compartmental  modeling of  such a system 
using a gradientless reactor  (9, 10). 

Provided that it can be observed with 
enough accuracy,  the behavior  of  z B around 
t = f i /F gives useful information about the 
possible number  of intermediates. The 
slope dzD/dt just  after the delay period is 
positive in the case of  a single intermediate 
(Fig. 4) but zero in the case of two sequen- 
tial intermediates (Fig. 5). 
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Z 

zA 

F 

Fro. 5. Observed tracer transients for a model with three unidirectional steps. 

Exchange with an Inactive Intermediate 

In some cases an intermediate may be 
converted to an inactive species with which 
it equilibrates. This condition may be repre- 
sented as follows: 

v v 
A---> All---~ B. 

~' +1' v~ (20) 
A21 

Material balance equations over a differen- 
tial section of the plug-flow reactor become 

0_~ [FA(w) zA(t ' W)] 
Ow 

+ [3CA(w) 0 zA(I ' W) = - V  za(t ,  W) (21) 
W Ot 

0 
C All -~ zZll( t ,  W) = W zZ(t,  W) 

-- (V  + Vl) zAll(t ,  W) -t- Ol Z a21 (22) 

0 
C a21 -~ zA21(t, W) 

= Vl zal l ( t ,  W) -- Vl zA21(t, W) (23) 

[FB(w) z~(t, w)] 
Ow 

+ /~CB(w) 0 zB(t ' W) = V zAll( t ,  W). (24) 
W Ot 

The treatment is similar to that of the 
models described by Eqs. (1) and (14). With 
the same basic assumptions and similar 
boundary conditions as used previously, 
we obtain 

z~(t, w) = z A [1 + 
82 + V/CAl  l 

SI -- S2 

-- ~W -~ V / C  All 
exp (Sl(t ff-~)) S I s l _ S  2 

t3w _ 13w 

where Sl and s2 are the roots of 

1 +  + - -  1 +  s 
Ul 

CallCa21 
+ - - V V l  s2=  0. (26) 

za(t, W) is still given by Eq. (12). Figure 6 
illustrates the observed tracer transients. 

From Eq. (25) we see that the time con- 
stants of the transient part of z ~ are -1/s~ 
and -1/s2.  Equation (26) indicates that if Vl 
is small enough, or if CA21 is big enough, at 
least one of the time constants will be large. 
This confirms the intuitive result that z ~ will 
slowly reach its final value if a long-lived 
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zAoo . . . . . .  J 

0.63Zo A .. . .  
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FIG. 6. Observed tracer trailsients for a model involving exchanges with an inactive intermediate. 

intermediate is present that does not lie in 
the main reaction path. 

DISCUSSION 

Perhaps the most important pitfall in 
transient tracing experimentation with 
plug-flow reactors is the failure to use a 
proper basic procedure for interpreting the 
data. Such a procedure must be capable of 
taking into account the simultaneous trans- 
fers of species to, within, and from the cata- 
lyst together with the transfers of gaseous 
species occurring along the catalyst bed. A 
natural framework for the construction of 
models, presented in this paper, is obtained 
through the use of the appropriate differen- 
tial equations. Such a procedure, to our 
knowledge, has not been used in studies re- 
ported in the literature. 

For example, recent studies by Biloen 
and co-workers (5, 6), with plug-flow tran- 
sient tracing by 13CO, use compartmental 
models for describing what takes place at 
the surface of the catalyst in terms of inter- 
connected pools (or compartments). A 
more elaborate pool model has also been 
employed in a study by de Pontes et al. (7), 
also using a plug-flow reactor. It might be of 

interest to apply the formalism presented 
here to the type of data obtained in plug- 
flow reactors, rather than using a compart- 
mental model formalism suited to the inter- 
pretation of data obtained in gradientless 
recirculating reactors. 

APPENDIX 1: N O M E N C L A T U R E  
(TYPICAL UNITS) 

A reaction component 
AI, B1, All,  Azl adsorbed intermediates 
B reaction component 
C a, C B concentration of A and 

B in gas phase, vol- 
ume fraction 

C x concentration of inter- 
mediate X, where X 
=A1,BI ,AI1 ,  orA21, 
on catalyst surface 
per unit mass of cata- 
lyst, ml STP/g 

Fa(w), F~(w) flow rate A and B at ax- 
ial position w in bed, 
ml STP/(s • g) 

F initial flow rate of A at w 
= 0 (F = Fa(w) + 
F~(w)), ml STP/(s • g) 

t time, s 
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u( t  - k) 

UI~ U+_I, U+_2 

V 

W 

W 

Z~t, w) 

unit step function 
(Heaviside step) with 
value of 0 at t < k and 
unity at t >- k 

reaction rate of individ- 
ual steps per unit 
mass of catalyst, ml 
STP/(s • g) 

overall reaction rate per 
unit mass of catalyst, 
ml STP/(s • g) 

axial position in bed, ex- 
pressed as the mass 
of catalyst traversed 
from inlet, g 

total mass of catalyst 
bed, g 

fraction of traced A in 
the feed for t >- 0 

fractional tracer mark- 
ing in circulating 
stream of product i as 
variant with time and 
space; i =  A, A1, B1, 
All ,  A21, B 

dead space including 
voids in catalyst bed 
(for a recirculating re- 
actor it also includes 
space outside the cat- 
alyst bed proper), ml 
STP 
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